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Abstract

Numerical simulations of the 2D lid-driven cavity flow are performed for a wide range of Reynolds num-

bers. Accurate benchmark results are provided for steady solutions as well as for periodic solutions around

the critical Reynolds number. Numerous comparisons with the results available in the literature are given.

The first Hopf bifurcation is localized by a study of the linearized problem.

� 2005 Elsevier Ltd. All rights reserved.

PACS: 65D99; 65P40; 76D05; 76D17; 76F65
1. Introduction

The classical lid-driven cavity problem has been investigated by many authors since some pio-
neer works giving good results of steady solutions twenty years ago [8,20]. Their results were con-
firmed by many other studies and the solution obtained at Re = 1000 for instance is quite close
from one author to another. Nevertheless there still are very different results concerning the first
Hopf bifurcation and the behaviour of the solution for intermediate and high Reynolds numbers.
In a former work [5], it was suggested that the first Hopf bifurcation occurs around Reynolds
number Re = 7500. Since then various results were given in the literature. This first bifurcation
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was given under Re = 7500 in [6] or [18], close to Re = 8000 in [7], [2] or [19] while some authors
localize it at Re = 10,000 and even close to Re = 30,000 [12]. The aim of this work is to shed some
light on this fundamental issue and to give benchmark results for Reynolds numbers up to
Re = 10,000.

The numerical simulation lie on a finite differences discretization and on a multigrid solver
with a cell-by-cell relaxation procedure [22,5]. Classical Euler or Gear time schemes are coupled
to a second-order approximation of the linear terms in space. To achieve a good accuracy a
special care of convective terms is required. In this work, they are treated explicitly and approx-
imated by third-order schemes to get both low diffusion effects and stability. A new third-order
scheme is constructed and compared to the classical ones, namely the original third-order
upwind scheme, the quickest scheme [16] and an other upwind scheme based on a centered
stencil [13].

The next section is devoted to the governing equations and the time and space discretization.
Then the multigrid solver is described and a special emphasis is given on the discretization of con-
vection terms. We recall three third-order schemes and construct carefully a fourth one which is
compared to the others on accurate benchmark results for steady solutions at Re = 1000 and
Re = 5000. Then, by computing the first Lyapunov exponent, we study the linear stability to
determine the critical Reynolds number Rec corresponding to the first Hopf bifurcation. This
study shows that this critical Reynolds number Rec is close to Re = 8000. Further, we compute
some periodic solutions beyond this value and in particular the solution at Re = 10,000. For all
these results until Re = 10,000, the grid convergence is achieved and reliable results are obtained
on an uniform 512 · 512 cells grid.
2. Governing equations and discretization

2.1. The Navier–Stokes equations

Let X = (0,1) · (0,1) be a 2D square cavity and T > 0 the simulation time, the governing equa-
tions of an unsteady incompressible flow are the evolution Navier–Stokes equations written in
primitive variables as:
otU � 1

Re
DU þ ðU � rÞU þrp ¼ 0 in �0; T ½ �X

r � U ¼ 0 in �0; T ½ �X

Uðt; x; yÞ ¼ ð�1; 0Þ on �0; T ½ �C1

Uðt; x; yÞ ¼ ð0; 0Þ on �0; T ½ �C0

Uð0; x; yÞ ¼ U 0ðx; yÞ in X

8>>>>>>>>>><>>>>>>>>>>:
ð1Þ
where U = (u,v) and p are, respectively, the velocity and the pressure, C1 is the top boundary, C0

represents the three other sides and U0 is an initial datum. The boundary condition is chosen so
that the primary vortex is positive. Most of the time, the flow is assumed to start from rest and
thus U0 = 0.
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2.2. Time discretization

The system of equation (1) is discretized by means of either a first-order Euler scheme or a sec-
ond-order Gear scheme. The linear terms are treated implicitly whereas the convection terms are
treated explicitly. We denote by Un the approximation of U at time tn = ndt where n 2 N and dt is
the time step. Thus, the Euler semi-discretized system reads
Un

dt
� 1

Re
DUn þrpn ¼ Un�1

dt
� ðUn�1 � rÞUn�1 in X

r � Un ¼ 0 in X

Un ¼ ð�1; 0Þ on C1

Un ¼ ð0; 0Þ on C0

8>>>>><>>>>>:
ð2Þ
and the Gear semi-discretized system reads
3Un

2dt
� 1

Re
DUn þrpn ¼ 2Un�1

dt
� 2ðUn�1 � rÞUn�1 � Un�2

2dt
þ ðUn�2 � rÞUn�2 in X

r � Un ¼ 0 in X

Un ¼ ð�1; 0Þ on C1

Un ¼ ð0; 0Þ on C0

8>>>>><>>>>>:
ð3Þ
We shall see in the last sections the difference between these two schemes. Of course to compute
steady solutions the influence of the time scheme is weak but for evolution solutions it can be of
main importance.

2.3. Space discretization

The system of equations (2) or (3) is discretized in space by finite differences on an uniform stag-
gered grid Gh the mesh size of which is h = dx = dy, where dx and dy are the step discretization in
each direction. The discrete values of the pressure are located at the center of each cell and those
of the velocity field are located at the middle of the sides as shown in Fig. 1.

The discretization of the left-hand side of equations (2) or (3) or is achieved using second-order
centered finite differences. For a generic inner cell that means that for instance
Fig. 1. A staggered cell.
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un

dt
� 1

Re
Dun þ oxpn
is approximated at point ði� 1
2
; jÞ by
un
i�1

2
;j

dt
� 1

Re

un
iþ1

2
;j
� 2un

i�1
2
;j
þ un

i�3
2
;j

dx2
þ
un
i�1

2
;jþ1

� 2un
i�1

2
;j
þ un

i�1
2
;j�1

dy2

 !
þ
pni;j � pni�1;j

dx
Let us point out to the reader that due to the use of staggered grids the discretization of the
diffusion terms at the boundary with a second-order schemes yields modified formulas as
ðoyyuÞi�1
2
;1 �

8

3
ui�1

2
;1
2
� 4ui�1

2
;1 þ

4

3
ui�1

2
;2

� �
ðdyÞ2 with ui�1

2
;1
2

.
¼ 0 on the bottom wall
The second equation of the momentum equation for the component v is discretized in the same
way. The divergence-free equation is approximated at the pressure point (i, j) by
un
iþ1

2
;j
� un

i�1
2
;j

dx
þ
vn
i;jþ1

2

� vn
i;j�1

2

dy
¼ 0.
This point is crucial as it links the four velocity components of the same cell. The convection
terms in the right-hand side of equations (2) are approximated by the third-order Murman-like
scheme constructed in Section 4. For instance
un�1

dt
� un�1oxun�1 � vn�1oyun�1
is approximated at point ði� 1
2
; jÞ by
un�1

i�1
2
;j

dt

� un�1
i;j

3

Di;jun�1

dx � 5un�1
i�1;j

6

Di�1;jun�1

dx þ un�1
i�2;j

6

Di�2;jun�1

dx if un�1
i�1;j > 0

� un�1
i�1;j

3

Di�1;jun�1

dx � 5un�1
i;j

6

Di;jun�1

dx þ un�1
iþ1;j

6

Diþ1;jun�1

dx if un�1
i;j < 0

�
vn�1

i�1
2
;jþ1

2

3

D
i�1

2
;jþ1

2
un�1

dy �
5vn�1

i�1
2
;j�1

2

6

D
i�1

2
;j�1

2
un�1

dy þ
vn�1

i�1
2
;j�3

2

6

D
i�3

2
;j�3

2
un�1

dy if vn�1
i�1

2
;j�1

2

> 0

�
vn�1

i�1
2
;j�1

2

3

D
i�1

2
;j�1

2
un�1

dy �
5vn�1

i�1
2
;jþ1

2

6

D
i�1

2
;jþ1

2
un�1

dy þ
vn�1

i�1
2
;jþ3

2

6

D
i�3

2
;jþ3

2
un�1

dy if vn�1
i�1

2
;jþ1

2

< 0
where un�1
i;j ¼ 1

2
un�1
iþ1

2
;j
þ un�1

i�1
2
;j

� �
and vn�1

i�1
2
;jþ1

2

¼ 1
2

vn�1
i;jþ1

2

þ vn�1
i�1;jþ1

2

� �
are obtained by linear interpolation,

Di;jun�1 ¼ un�1
iþ1

2
;j
� un�1

i�1
2
;j

� �
and Di�1

2
;jþ1

2
un�1 ¼ un�1

i�1
2
;jþ1

� un�1
i�1

2
;j

� �
.

The corresponding term for the vertical component of the velocity v is discretized in the same
way. The construction of this scheme is presented in Section 4 where we give a comparison of
various third-order schemes.
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3. Multigrid solver

The discretization of the coupled velocity–pressure system of equations (2) or (3) yields to solve
a discrete linear system LhV n

h ¼ Bn�1
h or LhV n

h ¼ Cn�1
1;h þ Cn�1

2;h where Lh represents the discrete oper-
ator, Bn�1

h is the discrete equivalent of the right-hand side of (2), Cn�1
1;h þ Cn�1

2;h is the discrete equiv-
alent of the right-hand side of (3) and V n

h ¼ ðUn
h; p

n
hÞ is the approximate solution to compute. We

solve this discrete linear system by the FAS multigrid solver [11] on a sequence of grids from the
fine grid chosen for the approximation Gp to a coarsest grid G1 as coarse as 4 · 4 cells. The mul-
tigrid algorithm uses a V-cycle procedure illustrated below for the computation of the fine grid
solution V n

h ¼ V n
p on grid Gp in the case of system (2).
For k ¼ 1 to number of V-cycles doeV k

p ¼ Sðm1Þ
p ðLp; V k�1

p ;Bn�1
p Þ

Correction on coarse grids

For q ¼ p � 1; 1;�1 do

V
k
q ¼ Rqþ1

q
eV k

qþ1

Bk
q ¼ Rqþ1

q Bk
qþ1 � Lqþ1

eV k

qþ1

� �
þ LqV

k
qeV k

q ¼ Sðm1Þ
q ðLq; V

k
q;B

k
qÞ

8>>>>>><>>>>>>:
Updating of the fine grids

For q ¼ 2; p dobV k

q ¼ eV k

q þ Pq
q�1 V k

q�1 � V
k
q�1

� �
V k

q ¼ Sðm2Þ
q Lq; bV k

q;B
k
q

� �
8>>><>>>:
Convergence test

if kBn�1
p � LpV k

pk 6 � stop iterations

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

In this algorithm SðmÞ

q denotes the smoother used on grid Gq to compute an approximate solution

of the linear system doing m iterations. The restriction Rqþ1
q and prolongation Pq

q�1 operators de-
scribe the linear interpolation operators from fine-to-coarse and from coarse-to-fine grids respec-
tively. Moreover, the second member that contains the convective term is discretized only on the
finest grid Gp and the second member on the coarse grids Bk

q is mainly obtained by restriction.
The smoothing operator S performs m1 or m2 iterations of a Gauss–Seidel cell-by-cell procedure

that leads to solve a 5 · 5 linear system corresponding to the five unknowns of a cell [22].
a 0 0 0 1=dx

0 a 0 0 �1=dx

0 0 a 0 1=dy

0 0 0 a �1=dy

�1=dx 1=dx �1=dy 1=dy 0

0BBBBBB@

1CCCCCCA

un
i�1

2
;j

un
iþ1

2
;j

vn
i;j�1

2

vn
i;jþ1

2

pni;j

0BBBBBBB@

1CCCCCCCA ¼

ðDn�1
h Þi�1

2
;j

ðDn�1
h Þiþ1

2
;j

ðDn�1
h Þi;j�1

2

ðDn�1
h Þi;jþ1

2

0

0BBBBBBB@

1CCCCCCCA
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In this system a ¼ 1
dt þ 2

Re ð 1dx þ 1
dyÞ and the other quantities of the linear operator are relaxed in the

second member. So ðDn�1
h Þi�1

2
;j represents the sum of these relaxed terms and ðBn�1

h Þi�1
2
;j. We solve

this 5 · 5 coupled system directly by a direct method. Indeed, eliminating the first four unknowns
in the first four equations we get pni;j, then the other unknowns follow. Let us point out that the
fifth equation ensures the free divergence constraint in each cell.
4. Discretization of convection terms

The direct numerical simulation of high Reynolds number flows requires in particular a good
approximation of convection terms. The challenge is to find out a scheme that ensures both accu-
racy and stability. Many works have dealt with this problem in the last two decades and with finite
differences it appears that a good choice is to take a third-order scheme (see for instance [16]).
Indeed, the stability of first-order schemes is very good, but their accuracy is poor as they induce
a lot of diffusion. On the contrary, second-order schemes are more accurate but their stability is in
general not ensured. In any cases, low order schemes neither capture the small eddies in the
boundary layer nor convey properly the coherent structures. A way to improve the resolution
of the method is to construct a high accurate scheme which holds good stability properties.

We first present or recall some third-order schemes for a non-linear convection equation con-
structed with the help of Euler scheme. Considering the one dimensional convection equation
otuðt; xÞ þ oxf ðuðt; xÞÞ ¼ 0; t > 0; x 2 R ð4Þ

we denote a(u) = f

0
(u), k the ratio dt

dx and uni the numerical approximation of u(ndt, idx).
The well known first-order Murman scheme reads
unþ1
i ¼ uni � k ani�1

2

� �þ
ðuni � uni�1Þ � k aniþ1

2

� ��
ðuniþ1 � uni Þ ð5Þ
where a+ = max(a, 0); a� = min(a, 0) and
aniþ1
2
¼

f ðuniþ1
Þ�f ðuni Þ

un
iþ1

�uni
if uniþ1 6¼ uni

f 0ðuni Þ if uniþ1 ¼ uni .

(

This scheme is stable, TVD and conservative. The disadvantage of this scheme is to introduce a lot
of numerical diffusion. In fact, by Taylor series expansion at a generic point (t,x)
uðt þ dt; xÞ � uðt; xÞ
dt

¼ otuðt; xÞ þ
dt
2
ottuðt; xÞ þ

dt2

6
otttuðt; xÞ þOðdt3Þ ð6Þ
and
f ðt; xÞ � f ðt; x� dxÞ
dx

¼ oxf ðt; xÞ �
dx
2
oxxf ðt; xÞ þ

dx2

6
oxxxf ðt; xÞ þOðdx3Þ ð7Þ
one gets, when f is a monotonous increasing function, that the first-order Murman scheme is a
second-order approximation in time and space of the following convection–diffusion equation
otuðt; xÞ þ oxf ðuðt; xÞÞ �
dx
2
oxðð1� kaðuÞÞoxf ðuÞÞðt; xÞ ¼ 0
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To improve the approximation in time, it is possible to use Gear scheme or Runge–Kutta meth-
ods for instance. Another way is to keep Euler scheme in time and use Lax–Wendroff process to
get high order schemes. In this case, one has to express the time derivatives in (6) by space deriv-
atives of the flux using Eq. (4). After Lax and Wendroff, this idea was used to construct a third-
order scheme for the advection equation [21] and gives rise to the famous Quickest scheme [16]
which is based on upwind biases cubic interpolation. This scheme reads in conservative form
unþ1
i ¼ uni � k aniþ1

2
/ð2Þ

iþ1
2

� ani�1
2
/ð2Þ

i�1
2

� �
� k aniþ1

2
/ð3Þ

iþ1
2

� ani�1
2
/ð3Þ

i�1
2

� �
ð8Þ
where /ð2Þ
iþ1

2

represents the second-order Lax–Wendroff part
/ð2Þ
iþ1

2

¼ 1

2
ððuniþ1 þ uni Þ � kaniþ1

2
ðuniþ1 � uni ÞÞ
and /ð3Þ
iþ1

2

the third-order part� �

/ð3Þ

iþ1
2

¼
1� kan

iþ1
2

� �2
12

uniþ2 � uniþ1 � uni � uni�1 � sign aniþ1
2

� �
ðuniþ2 � 3uniþ1 þ 3uni � uni�1Þ

� �

¼

1� kan
iþ1

2

� �2� �
6

ðuniþ1 � 2uni þ uni�1Þ if an
iþ1

2

> 0

1� kan
iþ1

2

� �2� �
6

ðuniþ2 � 2uniþ1 þ uni Þ otherwise

8>>>>>><>>>>>>:

However, this procedure is quite difficult to handle for the full Navier–Stokes equations with-

out using a splitting method.
We now propose some schemes which use only a third-order approximation in space. To obtain

a better approximation in time we can use for instance a Gear scheme as proposed in Section 2.2.
When f is a monotonous increasing function, we propose a third-order Murman-like scheme that
consists in using centered finite differences to approach oxxf and upwind differences to approach
oxxxf in (7). The resulting scheme reads
unþ1
i ¼ uni � kDi�1

2
f n � k

2
ðDiþ1

2
f n � Di�1

2
f nÞ þ k

6
ðDiþ1

2
f n � 2Di�1

2
f n þ Di�3

2
f nÞ ð9Þ
where Di�1
2
f ¼ fi � fi�1.

When Eq. (4) has a meaning in non-conservative form
otuðt; xÞ þ aðuÞoxuðt; xÞ ¼ 0; t > 0; x 2 R ð10Þ

it is possible to give a non-conservative version of the previous schemes. In particular the third-
order present scheme becomes
unþ1
i ¼ uni

� 1

3
kaniþ1

2
Diþ1

2
un � 5

6
kani�1

2
Di�1

2
un þ 1

6
kani�3

2
Di�3

2
un if ani�1

2
> 0

� 1

3
kani�1

2
Di�1

2
un � 5

6
kaniþ1

2
Diþ1

2
un þ 1

6
kaniþ3

2
Diþ3

2
un if aniþ1

2
< 0

ð11Þ
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Note that if an
i�1

2

> 0 and an
iþ1

2

< 0 the contribution of each term are added. In [13], Kawamura

et al. propose a third-order upwind scheme which can be written explicitly in non-conservative
form as
unþ1
i ¼ uni �

k
6
aðuni Þðuniþ2 � 2uniþ1 þ 9uni � 10uni�1 þ 2uni�2Þ if aðuni Þ > 0

� k
6
aðuni Þðuni�2 � 2uni�1 þ 9uni � 10uniþ1 þ 2uniþ2Þ otherwise

(
ð12Þ
This scheme is different from the standard third-order upwind scheme which uses a non-centered
stencil
unþ1
i ¼ uni �

k
6
aðuni Þð2uniþ1 þ 3uni � 6uni�1 þ uni�2Þ if aðuni Þ > 0

� k
6
aðuni Þð2uni�1 þ 3uni � 6uniþ1 þ uniþ2Þ otherwise

(
ð13Þ
These non-conservative schemes can be applied directly to the full Navier–Stokes equations. We
illustrate below the four third-order schemes on the discretization of the term �vn�1oyu

n�1 in the
second member at point (i� 1

2
; j) (see Fig. 1).

Present
� 1

3
vn�1
i�1

2
;jþ1

2

Di�1
2
;jþ1

2
un�1

dy
� 5

6
vn�1
i�1

2
;j�1

2

Di�1
2
;j�1

2
un�1

dy
þ 1

6
vn�1
i�1

2
;j�3

2

Di�3
2
;j�3

2
un�1

dy
if vn�1

i�1
2
;j�1

2
> 0

� 1

3
vn�1
i�1

2
;j�1

2

Di�1
2
;j�1

2
un�1

dy
� 5

6
vn�1
i�1

2
;jþ1

2

Di�1
2
;jþ1

2
un�1

dy
þ 1

6
vn�1
i�1

2
;jþ3

2

Di�3
2
;jþ3

2
un�1

dy
if vn�1

i�1
2
;jþ1

2
< 0

Upwind 3

�vn�1
i�1

2
;j

1
3
un�1
i�1

2
;jþ1

þ 1
2
un�1
i�1

2
;j
� un�1

i�1
2
;j�1

þ 1
6
un�1
i�1

2
;j�2

� �
=dy if vn�1

i�1
2
;j
> 0

vn�1
i�1

2
;j

1
3
un�1
i�1

2
;j�1

þ 1
2
un�1
i�1

2
;j
� un�1

i�1
2
;jþ1

þ 1
6
un�1
i�1

2
;jþ2

� �
=dy otherwise

8><>:
where vn�1

i�1
2
;j
¼ 1

4
vn�1
i�1;j�1

2

þ vn�1
i�1;jþ1

2

þ vn�1
i;j�1

2

þ vn�1
i;jþ1

2

� �
.

Kawamura
�vn�1
i�1

2
;j

1
6
un�1
i�1

2
;jþ2

� 1
3
un�1
i�1

2
;jþ1

þ 3
2
un�1
i�1

2
;j
� 5

3
un�1
i�1

2
;j�1

þ 1
3
un�1
i�1

2
;j�2

� �
=dy if vn�1

i�1
2
;j
> 0

vn�1
i�1

2
;j

1
6
un�1
i�1

2
;j�2

� 1
3
un�1
i�1

2
;j�1

þ 3
2
un�1
i�1

2
;j
� 5

3
un�1
i�1

2
;jþ1

þ 1
3
un�1
i�1

2
;jþ2

� �
=dy otherwise

8><>:
Quickest

� 1

2dy
vn�1
i�1

2
;jþ1

2
un�1
i�1

2
;jþ1

þ un�1
i�1

2
;j �

dt
dy

vn�1
i�1

2
;jþ1

2
un�1
i�1

2
;jþ1

� un�1
i�1

2
;j

� �� �

þ 1

2dy
vn�1
i�1

2
;j�1

2
un�1
i�1

2
;j þ un�1

i�1
2
;j�1

� dt
dy

vn�1
i�1

2
;j�1

2
un�1
i�1

2
;j � un�1

i�1
2
;j�1

� �� �
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� 1

6dy
vn�1
i�1

2
;jþ1

2

1� dt
dy v

n�1
i�1

2
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To take into account the boundary conditions, we use two fictitious cells out side of the domain
where the velocity is linearly extrapolated according to its value at the boundary.
5. Numerical comparison on steady solutions

In this section, we compare the previous schemes on steady solutions for which an abundant
literature is available. First results were already given about 20 years ago in [8,20]. Since then,
many authors compared their results to these pioneer works. The results presented in this section
are computed with Euler scheme in time whatever the space discretization is for convection terms.
Indeed, as the solution is steady, the time scheme has no influence on the accuracy of the final
solution. These solutions are qualified as steady when the relative error between two time steps
is less than 10�12 on a significant time interval. This steady property is also seen on the velocity
or pressure signals at monitoring points that are constant and on the phase portraits that reduce
to a single point.
5.1. The Re = 1000 lid driven cavity flow

The first classical test case we consider is the cavity flow at Re = 1000. Recently, an accurate
study has been performed using a Chebyshev collocation method [3] for this test case. They obtain
a good convergence up to seven digits on two consecutive approximations. Numerous compari-
sons with other results of the literature can be found in this paper. The solution computed with
our method is plotted in Fig. 2. It exhibits a large primary vortex with two secondary vortices in
the two bottom corners. The pressure isolines are plotted after setting the pressure equal to zero at
the center of the cavity. The values of the stream-function, the vorticity and the pressure contours
are given in Table 1. As in [3], the value 0.1175 of the stream-function is chosen to better represent
the primary vortex core. The plain isolines refer to positive values and the dotted isolines refer to
non-positive values.

First of all, we give comparisons in Tables 2 and 3 of the four different third-order schemes pre-
sented in Section 4. They concern the value and the location of the extrema of the stream-function
to which is added the value of the vorticity at the same location. The choice of these values is gov-
erned by the data available in the literature. We can see on these tables that three schemes give



Table 1

Contours values of the stream-function, the vorticity and the pressure

Isolines values

Stream-function

�0.1 �0.08 �0.06 �0.04 �0.02 �0.01

�3 · 10�3 �1 · 10�3 �3 · 10�4 �1 · 10�4 �3 · 10�5 �1 · 10�5

�3 · 10�6 �1 · 10�6 �1 · 10�7 �1 · 10�8 �1 · 10�9 �1 · 10�10

0.0 1 · 10�10 1 · 10�9 1 · 10�8 1 · 10�7 1 · 10�6

3 · 10�6 1 · 10�5 3 · 10�5 1 · 10�4 3 · 10�4 1 · 10�3

3 · 10�3 0.01 0.03 0.05 0.07 0.09

0.1 0.11 0.115 0.1175

Vorticity

�40.0 �35.0 �30.0 �25.0 �20.0 �15.0

�10.0 �8.0 �6.0 �4.0 �3.0 �2.0

�1.0 �0.5 �0.2 0.2 0.5 1.0

2.0 3.0 4.0 6.0 8.0 10.0

15.0 20.0 25.0 30.0 35.0 40.0

Pressure from �2.0 to 2.0 by step 0.01

Fig. 2. Steady solution at Re = 1000 computed with present scheme on grid 1024 · 1024. From left to right stream-

function, vorticity and pressure fields.
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about the same values on a sequence of grids but not the Quickest scheme [16] which is far too
diffusive. Among the three others, the scheme proposed by Kawamura et al. is less stable than
the two others. Indeed it requires a CFL condition more restrictive. For instance on the grid
128 · 128 the time step dt = 0.006 is needed instead of dt = 0.008. This is not surprising because
this scheme uses a centered stencil and is in some sense more centered than the others. The
CFL condition imposed by the explicit treatment of convection terms gives dt = 0.0078125. Then
this scheme needs a CFL number around 0.75 when the others accept a CFL number slightly
greater than one. Then we compare our results to these of the literature and plot the same data
in Table 4. We compare, on one hand, on a coarse grid to the classical results in [8,20,22] and
on the other hand on a fine grid to the very accurate results obtained in [3] with 160 Chebyshev



Table 2

Comparison of the four third-order schemes on the primary vortex at Re = 1000: maximum of the stream-function,

vorticity and location

Scheme Grid wmax x x y

Present 128 · 128 0.11786 2.0508 0.46875 0.5625

Upwind 3 128 · 128 0.11796 2.0549 0.46875 0.5625

Kawamura 128 · 128 0.11790 2.0557 0.46875 0.5625

Quickest 128 · 128 0.11503 1.9910 0.46875 0.5625

Present 256 · 256 0.11865 2.0634 0.46875 0.5664

Upwind 3 256 · 256 0.11870 2.0644 0.46875 0.5664

Kawamura 256 · 256 0.11867 2.0636 0.46875 0.5664

Quickest 256 · 256 0.11599 2.0069 0.46875 0.5664

Present 512 · 512 0.11886 2.0665 0.46875 0.56445

Upwind 3 512 · 512 0.11887 2.0668 0.46875 0.56445

Kawamura 512 · 512 0.11887 2.0667 0.46875 0.56445

Quickest 512 · 512 0.11741 2.0350 0.46875 0.56445

Present 1024 · 1024 0.11892 2.0674 0.46875 0.56543

Upwind 3 1024 · 1024 0.11892 2.0674 0.46875 0.56445

Kawamura 1024 · 1024 0.11892 2.0674 0.46875 0.56445

Quickest 1024 · 1024 0.11798 2.0434 0.46875 0.56445

Table 3

Comparison of the four third-order schemes on the lower left secondary vortex at Re = 1000: minimum of the stream-

function, vorticity and location

Scheme Grid wmin x x y

Present 128 · 128 �1.7003 · 10�3 �1.1304 0.14063 0.10938

Upwind 3 128 · 128 �1.7322 · 10�3 �1.1204 0.14063 0.10938

Kawamura 128 · 128 �1.7281 · 10�3 �1.1138 0.14063 0.10938

Quickest 128 · 128 �1.7689 · 10�3 �1.0771 0.13281 0.10938

Present 256 · 256 �1.7219 · 10�3 �1.1345 0.13672 0.11328

Upwind 3 256 · 256 �1.7303 · 10�3 �1.1333 0.13672 0.11328

Kawamura 256 · 256 �1.7295 · 10�3 �1.1322 0.13672 0.11328

Quickest 256 · 256 �1.7551 · 10�3 �1.1340 0.13672 0.10938

Present 512 · 512 �1.7279 · 10�3 �1.1137 0.13672 0.11133

Upwind 3 512 · 512 �1.7300 · 10�3 �1.1132 0.13672 0.11133

Kawamura 512 · 512 �1.7299 · 10�3 �1.1131 0.13672 0.11133

Quickest 512 · 512 �1.7419 · 10�3 �1.1082 0.13477 0.11133

Present 1024 · 1024 �1.7292 · 10�3 �1.1120 0.13574 0.11230

Upwind 3 1024 · 1024 �1.7297 · 10�3 �1.1143 0.13672 0.11133

Kawamura 1024 · 1024 �1.7297 · 10�3 �1.1143 0.13672 0.11133

Quickest 1024 · 1024 �1.7333 · 10�3 �1.1265 0.13672 0.11133
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polynomials. We can see that the present results compare very well and that the results on the
medium grids are already very good.



Table 4

Comparison of various works on the primary vortex and on the lower left secondary vortex at Re = 1000

Scheme Grid wmax x x y

Present 128 · 128 0.11786 2.0508 0.46875 0.5625

Ghia [8] 128 · 128 0.117929 2.04968 0.4687 0.5625

Schreiber [20] 140 · 140 0.11603 2.026 0.47143 0.56429

Vanka [22] 320 · 320 0.1173 – 0.4562 0.5625

Present 1024 · 1024 0.11892 2.0674 0.46875 0.56543

Botella [3] N = 160 0.1189366 2.067753 0.4692 0.5652

wmin

Present 128 · 128 �1.7003 · 10�3 �1.1304 0.14063 0.10938

Ghia [8] 128 · 128 �1.75102 · 10�3 �1.15465 0.14062 0.1094

Schreiber [20] 140 · 140 �1.700 · 10�3 �0.999 0.13571 0.10714

Vanka [22] 320 · 320 �1.74 · 10�3 – 0.1375 0.1063

Present 1024 · 1024 �1.7292 · 10�3 �1.1120 0.13672 0.11230

Botella [3] N = 160 �1.729717 · 10�3 �1.109789 0.13602 0.1118
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Some other quantities are available in the literature. In particular the velocity, the pressure and
the vorticity along the centerlines of the cavity. Once again, we can see in Tables 5 and 6 that the
present results are in very good agreement with the results found in [3].

Finally, we think that in addition to local quantities it is interesting to compare global quanti-
ties as the total kinetic energy E, the enstrophy Z and the palinstrophy P defined by
Table

Horiz

schem

y

1.0000

0.9688

0.9531

0.7344

0.5000

0.2813

0.1016

0.0625

0.0000
E ¼ 1

2

Z
X
kUk2 dx; Z ¼ 1

2

Z
X
kxk2dx; P ¼ 1

2

Z
X
krxk2 dx
where x = oxv � oyu is the vorticity. Denoting Ui;j ¼ ðui;j; vi;jÞ ¼ uiþ1
2
;j þ ui�1

2
;j

� �� .
2;

vi;jþ1
2
þ vi;j�1

2

� �.
2
�
the velocity at the center of a cell, the energy is approximated by
1

2
dxdy

X
i;j

ðu2i;j þ v2i;jÞ
5

ontal velocity, pressure and vorticity through the vertical centerline of the cavity at Re = 1000 with the present

e on grid 1024 · 1024

u, Ref. [8] u, Ref. [3] u, Present p, Ref. [3] p, Present x, Ref. [3] x, Present

�1.00000 �1.00000 �1.00000 0.052987 0.052971 14.7534 14.792

�0.57492 �0.58083 �0.58031 0.051514 0.051493 9.49496 9.4781

�0.46604 �0.47233 �0.47239 0.050329 0.050314 4.85754 4.8628

�0.18719 �0.18867 �0.18861 0.012122 0.012113 2.09121 2.0909

0.06080 0.06205 0.06205 0.000000 0.000000 2.06722 2.0669

0.27805 0.28036 0.28040 0.040377 0.040381 2.26722 2.2678

0.29730 0.30045 0.30029 0.104187 0.104416 �1.63436 �1.6352

0.20196 0.20233 0.20227 0.109200 0.10916 �2.31786 �2.3174

0.00000 0.00000 0.00000 0.110591 0.11056 �4.16648 �4.1554



Table 6

Vertical velocity, pressure and vorticity through the horizontal centerline of the cavity at Re = 1000 with the present

scheme on grid 1024 · 1024

x v, Ref. [8] v, Ref. [3] v p, Ref. [3] p x, Ref. [3] x

0.0000 0.00000 0.00000 0.00000 0.077455 0.077429 �5.46217 �5.4967

0.0391 �0.27669 �0.29368 �0.29330 0.078685 0.078658 �8.24616 �8.2462

0.0547 �0.39188 �0.41037 �0.41018 0.077154 0.077128 �6.50867 �6.5097

0.1406 �0.42665 �0.42645 �0.42634 0.049029 0.049004 3.43016 3.4294

0.5000 0.02526 0.02579 0.02580 0.000000 0.00000 2.06722 2.0669

0.7734 0.33075 0.33399 0.33398 0.047260 0.047259 2.00174 2.0010

0.9062 0.32627 0.33304 0.33290 0.084386 0.084369 �0.82398 �0.82517

0.9297 0.29012 0.29627 0.29622 0.087653 0.087625 �1.50306 �1.5025

1.0000 0.00000 0.00000 0.00000 0.090477 0.090448 �7.66369 �7.6333
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The other quantities are computed in the same way with the vorticity evaluated at the vertices
of the mesh and its gradient at the middle of the cell sides. As the solution is stationary, these
quantities yield a constant value which is about the same for the three first schemes as shown
in Table 7. We can see that the grid convergence is achieved for the kinetic energy whereas it is
false for the two other quantities. Indeed for this problem, because of the singularity at the corner,
it is not possible to get convergence as there is a jump of the velocity that induces infinite deriv-
atives. It is well known that the enstrophy behaves like 1/r near the singular corners [2,3] and thus
the enstrophy and palinstrophy go to infinity as the mesh size goes to zero. The same quantities
Table 7

Comparison of the four third-order schemes on the global quantities energy, enstrophy and palinstrophy at Re = 1000

Scheme Grid Energy Enstophy Palinstrophy

Present 128 · 128 0.043641 17.567 0.14377 · 10+6

Upwind 3 128 · 128 0.043721 17.685 0.15280 · 10+6

Kawamura 128 · 128 0.043672 17.634 0.14815 · 10+6

Quickest 128 · 128 0.041973 17.394 0.14462 · 10+6

Present 256 · 256 0.044286 19.328 0.48476 · 10+6

Upwind 3 256 · 256 0.044313 19.363 0.49696 · 10+6

Kawamura 256 · 256 0.044300 19.348 0.49253 · 10+6

Quickest 256 · 256 0.042690 19.159 0.48594 · 10+6

Present 512 · 512 0.044458 20.908 0.17708 · 10+7

Upwind 3 512 · 512 0.044466 20.918 0.17862 · 10+7

Kawamura 512 · 512 0.044463 20.915 0.17831 · 10+7

Quickest 512 · 512 0.043580 20.818 0.17749 · 10+7

Present 1024 · 1024 0.044503 22.424 0.68169 · 10+7

Upwind 3 1024 · 1024 0.044500 22.426 0.68358 · 10+7

Kawamura 1024 · 1024 0.044500 22.425 0.68343 · 10+7

Quickest 1024 · 1024 0.043967 22.374 0.68260 · 10+7
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computed for the regularized cavity problem with U(t,x, 1) = (�16x2(1 � x)2, 0) gives converged
values as can be seen in Table 8.
Table 8

Convergence of the total quantities for the regularized cavity problem at Re = 1000

Scheme Grid Energy Enstophy Palinstrophy

Present 64 · 64 0.021564 4.6458 0.56113 · 10+4

Present 128 · 128 0.022315 4.7711 0.70138 · 10+4

Present 256 · 256 0.022542 4.8123 0.78165 · 10+4

Present 512 · 512 0.022607 4.8243 0.82699 · 10+4

Fig. 3. Steady solution at Re = 5000 computed with present scheme on grid 2048 · 2048. Erom left to right stream-

function, vorticity and pressure fields.

Table 9

Comparison of the four third-order schemes on the primary vortex at Re = 5000: maximum of the stream-function,

vorticity and location

Scheme Grid wmax x x y

Present 128 · 128 0.11731 1.8595 0.48438 0.53906

Upwind 3 128 · 128 0.11755 1.9797 0.48438 0.53906

Kawamura 128 · 128 0.11795 1.8938 0.48438 0.53906

Quickest 128 · 128 0.10889 1.6967 0.48438 0.53906

Present 256 · 256 0.12064 1.9125 0.48438 0.53516

Upwind 3 256 · 256 0.12085 1.9196 0.48438 0.53516

Kawamura 256 · 256 0.12097 1.9219 0.48438 0.53516

Quickest 256 · 256 0.11331 1.7706 0.48438 0.53516

Present 512 · 512 0.12173 1.9299 0.48438 0.53516

Upwind 3 512 · 512 0.12182 1.9327 0.48438 0.53516

Kawamura 512 · 512 0.12182 1.9331 0.48438 0.53516

Quickest 512 · 512 0.11710 1.8351 0.48438 0.53516

Present 1024 · 1024 0.12193 1.9322 0.48535 0.53516

Upwind 3 1024 · 1024 0.12200 1.9343 0.48535 0.53516
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5.2. The Re = 5000 lid driven cavity flow

This Reynolds number Re = 5000 is a good choice as there are some comparisons available in
the literature and as the steady solution is still stable but not too far from the first Hopf bifurca-
tion. For this test case, there is no very accurate results as in the previous case and we choose our
results obtained with the present scheme on a fine grid 2048 · 2048 as a reference. This solution is
Table 10

Comparison of the four third-order schemes on the lower left secondary vortex at Re = 5000: minimum of the stream-

function, vorticity and location

Scheme Grid wmin x x y

Present 128 · 128 �2.9313 · 10�3 �2.7718 0.19531 0.070313

Upwind 3 128 · 128 �3.0228 · 10�3 �2.4974 0.19531 0.078125

Kawamura 128 · 128 �2.9790 · 10�3 �2.4705 0.19531 0.078125

Quickest 128 · 128 �3.7090 · 10�3 �3.4205 0.19531 0.070313

Present 256 · 256 �3.0348 · 10�3 �2.6330 0.19141 0.074219

Upwind 3 256 · 256 �3.0630 · 10�3 �2.6810 0.19531 0.074219

Kawamura 256 · 256 �3.0573 · 10�3 �2.6746 0.19531 0.074219

Quickest 256 · 256 �3.4009 · 10�3 �3.1966 0.19531 0.070313

Present 512 · 512 �3.0618 · 10�3 �2.7458 0.19531 0.072266

Upwind 3 512 · 512 �3.0708 · 10�3 �2.7368 0.19531 0.072266

Kawamura 512 · 512 �3.0699 · 10�3 �2.7355 0.19531 0.072266

Quickest 512 · 512 �3.2265 · 10�3 �2.9918 0.19531 0.070313

Present 1024 · 1024 �3.0694 · 10�3 �2.7245 0.19434 0.073242

Upwind 3 1024 · 1024 �3.0722 · 10�3 �2.7735 0.19629 0.072266

Table 11

Comparison of various works on the primary vortex and on the lower left secondary vortex at Re = 5000

Scheme Grid wmax x x y

Present 256 · 256 0.12064 1.9125 0.48438 0.53516

Ghia [8] 256 · 256 0.118966 1.86016 0.4883 0.5352

Huser [12] 80 · 80 stretched 0.1219 2.001 – –

Kim-Moin [14] 96 · 96 stretched 0.112 1.812 – –

Goodrich [10] 256 · 256 0.118 – 0.48438 0.53516

Vanka [22] 160 · 160 0.0920 – 0.4875 0.5313

Pan-Glowinski [17] 256 · 256 0.121218 – 0.4844 0.5352

Kupperman [15] 128 · 128 0.12216 – – –

Present (reference) 2048 · 2048 0.12197 1.9327 0.48535 0.53516

wmin

Present 256 · 256 �3.0348 · 10�3 �2.6330 0.19141 0.074219

Ghia [8] 256 · 256 �3.0835 · 10�3 �2.66354 0.1914 0.07422

Goodrich [10] 256 · 256 �3.13 · 10�3 – 0.1953 0.07422

Vanka [22] 160 · 160 �5.49 · 10�3 – 0.15 0.0813

Present (reference) 2048 · 2048 �3.0706 · 10�3 �2.7244 0.19434 0.073242



Table 12

Comparison of the four third-order schemes on the global quantities energy and enstrophy at Re = 5000

Scheme Grid Energy Enstrophy

Present 128 · 128 0.043566 30.861

Upwind 3 128 · 128 0.043740 31.986

Kawamura 128 · 128 0.043874 30.601

Quickest 128 · 128 0.038563 29.535

Present 256 · 256 0.046204 34.368

Upwind 3 256 · 256 0.046353 34.851

Kawamura 256 · 256 0.046347 34.645

Quickest 256 · 256 0.041537 33.709

Present 512 · 512 0.047066 36.768

Upwind 3 512 · 512 0.047132 36.957

Kawamura 512 · 512 0.047126 36.890

Quickest 512 · 512 0.044084 36.325

Present 1024 · 1024 0.047255 38.643

Upwind 3 1024 · 1024 0.047292 38.698

Present 2048 · 2048 0.047290 40.261
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plotted in Fig. 3. It exhibits in addition to the two secondary vortices in the bottom corners a third
vortex in the upper right corner and much stronger gradients than the solution at Re = 1000.

We compare again the four third-order schemes at this Reynolds number. We can see in Tables
9 and 10 that the Quickest scheme is still too diffusive. We can also make the same remark about
the stability for Kawamura et al. scheme that needs a CFL number 0.75. The two other schemes
give close results. The comparison with the results of the literature (Table 11) is quite difficult as
the results are most often given on a single grid. In [22] this is due to the lost of stability on finer
grids. Nevertheless our results are coherent with the results given in [8,15,17,10]. The last point we
present is the comparison of the global quantities energy and enstrophy. The grid convergence is
reached for the kinetic energy and we can see in Table 12 that the upwind scheme and the present
scheme give about the same results. The whole comparison in Sections 5.1 and 5.2 shows that the
steady solutions we get are in very good agreement with the one of the literature and also shows
that among the four third-order schemes the upwind scheme and the present scheme are the best.
We choose to perform all the simulations to the end of the paper with our proposed scheme.
6. Linear stability

6.1. Linearized problem

In this section, we are studying the stability of the steady solution. We want to know as accu-
rately as possible when the steady solution loses its stability to the benefit of a periodic solution,
which corresponds to the localization of the first Hopf bifurcation. In other terms, how far a stea-
dy-state solution can be observed physically? To answer this question we propose to compute the
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first Lyapunov exponent of the linearized system. As we are only interested in the first Hopf bifur-
cation, we assume that a small perturbation (V,q) is added to the steady solution (Us,ps) of system
(1). The stability study consists in looking at the behaviour of the perturbation along time. This
behaviour is driven by the smallest real part of the eigenvalues of the linearized space operator. If
the steady solution is stable, the perturbation goes to zero when t goes to infinity as el1t where l1 is
the first Lyapunov exponent defined by (see [1]):
l1 ¼ lim
t!þ1

LogkV ðtÞk
t

Using the fact that (US,pS) is a steady solution, we have to solve the simplified linear problem
otV � 1

Re
DV þ ðUS � rÞV þ ðV � rÞUS þrq ¼ 0 in X� ð0; T Þ

r � V ¼ 0 in X� ð0; T Þ
V ¼ V 0 in X

V ¼ 0 on oX� ð0; T Þ

ð14Þ
where the non-linear term (V Æ $)V is neglected.

6.2. Steady solution analysis

The problem (14) is solved exactly in the same way that the initial problem (1). The only dif-
ficulty is that the numerical solution Vn at time ndt becomes very small for large n. So, the solution
is normalized at each time iteration by setting V n

0 ¼ V n=kV n�1k and the Lyapunov exponent is
approximated by
ln
1 ¼

Pn�1

i¼0 LogkV i
0k

ndt
if we take kV0k = 1. The results are not very sensitive to the initial datum V0. We can choose either
an arbitrary datum satisfying the boundary conditions such that kV0k = 1 or the difference be-
tween a periodic and a steady solution of (1) normalized to one.

The main difficulty is probably to well determine the convergence criteria. It appears that the
behaviour of the sequence Vn is very different from low Reynolds numbers to high Reynolds num-
bers. At Re = 10 for instance, the norm of Vn decreases very fast and cannot be the unique crite-
rion of convergence. Indeed, the value of the Lyapunov exponent can be very far to the converged
value even if kVnk = 10�10. It is then necessary to add a crite rion based on the relative error on
the approximation of l1. Conversely for Reynolds numbers higher than 5000 the norm of Vn de-
creases very slowly and the relative error is smaller than kVnk. So, we decide to take two criteria
for the convergence kVnk 6 10�8 and kln

1 � ln�1
1 k=kln�1

1 k 6 10�6. We stop the computation only if
the two criteria are satisfied.

Another important point is the computation of the steady solution (US,pS) for high Reynolds
numbers. It is absolutely necessary that the steady state has been completely achieved. On coarse
grids, the solution with Euler scheme can be periodic and thus the linearized computation will fail



Fig. 4. Horizontal velocity history at monitoring point (14/16,13/16) for Re = 7800. Comparison of Euler and Gear

schemes on the 128 · 128 (left) and 256 · 256 (right) grids.

Table 13

Evolution of the Lyapunov exponent with Reynolds number

Re 10 100 1000 5000 7800 8000

T 38 110 242 1386 2243 7442

l1 �5.2 �0.56 �0.076 �0.013 �0.0082 �0.0026
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(see Fig. 4). In this case, either the use of Gear scheme or a computation on a finer grid is neces-
sary to reach the steady-state and insure the success of the convergence of Vn. The plots of Fig. 4
show that both choices are efficient. Until Re = 8000, we get a steady solution on grid 256 · 256 as
well as on finer grids. For low Reynolds numbers the convergence to the Lyapunov exponent is
very fast and monotonous. On the contrary, for high Reynolds numbers the convergence is very
slow and not monotonous. Actually the sequence ln

1 oscillates around the limit for a long time.
For example at Re = 8000 the value l1 = �0.0026 (see Table 13) is reached at time T = 2400
Fig. 5. Horizontal velocity history (left) and power spectrum (right) on grid 1024 · 1024 at monitoring point (14/16,

13/16) for Re = 8050. Computation with Gear scheme in time and present scheme in space.



344 C.-H. Bruneau, M. Saad / Computers & Fluids 35 (2006) 326–348
and then ln
1 oscillates slightly around this value. The fact that the first Lyapunov exponent goes to

zero indicates that the steady solution looses its stability and that the critical Reynolds number is
very close to Re = 8000. Moreover, the presence of the first Hopf bifurcation is confirmed by the
computation of the solution of Navier–Stokes system which is stationary under this value and
periodic beyond. The numerical approximation yields the stable solution whatever the initial
datum is. Even starting with the steady solution obtained at Re = 8000, the convergence process
for a simulation at Re = 8050 drifts slowly towards a stable periodic solution. Once again, we see
the need of an accurate time scheme to get the right solution at Re = 8050. On grid 256 · 256 we
get after a very long simulation time a steady solution with Euler scheme whereas we get a peri-
odic solution with Gear scheme. But on grid 512 · 512 or on finer grids both time schemes give a
periodic solution with the same frequency f = 0.45 (see Fig. 5). We can conclude from our numer-
ical tests performed on several consecutive grids that the critical Reynolds number for the 2D lid-
driven cavity problem is 8000 6 Rc 6 8050 within less than 1% of error. The present value of the
critical Reynolds number is also confirmed by the few results available in the literature, in partic-
ular in [7,19] where the first eigenvalues are computed. In these papers, the authors localize the
first Hopf bifurcation at Re = 7998.5 or Re = 8031.93 when the eigenvalue with the smallest real
part reaches the imaginary axis. In references [2,17,18] the critical Reynolds number is given
respectively around Re = 8018, between Re = 7500 and Re = 8500 and around Re = 7400.
7. Periodic solutions

After the first Hopf bifurcation, there is a stable periodic solution. At Re = 8100, the solution
computed on grid 512 · 512 with gear scheme in time and the present scheme in space is a purely
periodic solution with frequency f = 0.45 as shown in Fig. 6. In this figure is plotted the time
evolution of the first component of the velocity at monitoring point (14/16,13/16) and a Fourier
analysis is performed for this signal. However the behaviour is exactly the same for other quan-
tities as the pressure, the second component of the velocity or the vorticity. Moreover the same
Fig. 6. Horizontal velocity history (left) and power spectrum (right) on grid 512 · 512 at monitoring point (14/16,13/16)

for Re = 8100 and Re = 8200 Computation with Gear scheme in time and present scheme in space.
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results are obtained at the other points considered, namely (1/2,1/2), (1/16,1/2), (3/16,1/16), (14/
16,1/16) and (14/16,15/16) even if there is some variations on the amplitude of the signals. These
points are chosen in order to well analyze the behaviour of the solution in every part of the cavity.
For Re = 8200 a good periodic solution is obtained with the same frequency (see Fig. 6). Let us
point out to the reader that for these Reynolds numbers the grid convergence is achieved as the
solutions on two consecutive grids 512 · 512 and 1024 · 1024 are identical. In addition the fre-
quency is very close to the one obtained at Re = 8000 in [7], Re = 8018 in [2] and Re = 8500 in [17].

Then we compute the solution at Re = 10,000. This value is probably the most famous value
and for quite a long time the question was to know if the steady solution was stable or not for
this Reynolds number. Some pioneer works [8,20] and also some more recent works [12,19,23] re-
port stable steady solutions until this value. Definitely, we can assert that the steady solution is not
stable any more at Re = 10,000 as we have proven in the previous section that the first Hopf bifur-
cation occurs around Re = 8000. Some computations on several consecutive grids with various
Fig. 7. Horizontal velocity history (left) and power spectrum (right) at monitoring point (14/16,13/16) for Re = 10,000.

Computation with Gear scheme in time and present scheme in space.

Fig. 8. Phase portrait on grid 512 · 512 (left) and on grid 1024 · 1024 (right) at monitoring point (14/16,13/16) for

Re = 10,000. Computation with Gear scheme in time and present scheme in space.



Fig. 9. Evolution of the streamfunction during one main period for Re = 10,000 on grid 1024 · 1024. From top to

bottom and left to right are represented times t = 0, t = 0.328, t = 0.656, t = 0.984, t = 1.312 and t = 1.64.

346 C.-H. Bruneau, M. Saad / Computers & Fluids 35 (2006) 326–348



C.-H. Bruneau, M. Saad / Computers & Fluids 35 (2006) 326–348 347
initial data show that the stable solution is mainly periodic with small variations in the amplitude
of the time evolution at the monitoring points (see Fig. 7). The results on grids 512 · 512 and
1024 · 1024 are very similar and give the same main frequency f = 0.61. The time history of the
kinetic energy is also a periodic signal with the same frequency that oscillates around the mean
value E = 0.046. The Fourier analysis as well as the phase portraits show that the variations in
amplitude yield a solution which is not purely periodic and exhibits some low frequencies
f2 = 0.175 and f3 = 0.4375 (Figs. 7 and 8). This shows that we have got a new branch of solutions
which is in accordance with the results found in [2] at Re = 9765 and in [18] at Re = 10,300. A
computation on a finer 2048 · 2048 cells grid confirms these results and gives exactly the same fre-
quencies. In Fig. 9 the vorticity field is plotted along a main period from time t = 0 to time t = 1.64
to show the evolution of the secondary vortices that deform slightly the primary vortex. Indeed,
the primary vortex is still attached to the three walls of the cavity but the secondary vortices are
unstable. The secondary and tertiary vortices in the bottom left corner are almost stable and pulse
slowly whereas the secondary vortices in the two other corners are split into two pieces and re-
formed along time. The flow patterns of Fig. 9 are very close to those shown in [6].
8. Conclusions

Simulations of the 2D lid-driven cavity flow have been performed for various Reynolds num-
bers already studied. Highly accurate benchmark results are provided including new global quan-
tities as the kinetic energy and the enstrophy. The results are compared to the best results
available in the literature. The first Hopf bifurcation is obtained at Reynolds number close to
Re = 8000 and a mainly periodic solution is described at Re = 10,000 with a main frequency
f = 0.61. The grid convergence is achieved for each Reynolds number but it appears that the
numerical simulations on grid 512 · 512 are accurate enough to well represent the solution even
for Re = 10,000.
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