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Abstract-The re-examination of the classical droplet vaporization model is made in order to develop the 
simple but sticiently accurate calculation algorithm which can be used in spray combustion calculations. 
The new model includes the effects of variable thermophysical properties, non-unitary Lewis number in 
the gas film, the effect of the Stefan flow on heat and mass transfer between the droplet and the gas, and 
the effect of internal circulation and transient liquid heating. To evaluate the competing simplified models 
of the droplet heating, the more-refined, extended model of heat transfer within a moving circulating 
droplet is considered. A simplified, one-dimensional ‘effective conductivity’ model is formulated for the 
transient liquid heating with internal circulation. As an illustration, the dynamic and vaporization histories 

of the dropkts injected into the steady and fluctuating hot air streams are analyzed. 

INTRODUCTION 

THE THEORETICAL analyses of spray combustion in 
liquid-fueled engines often use the deterministic 
approach [I] which requires the simultaneous cal- 
culations of trajectories and vaporization rates of 
many individual droplets. These droplets are injected 
into the combustion chamber at different times, and 
have various initial sizes and velocities. The prediction 
of such important characteristics as the geometry of 
the spray or an ignition position depends significantly 
on the model selected for the single droplet vapor- 
ization/combustion analysis. 

The theory of fuel droplet vaporization/combustion 
has been intensively developed during the past several 
decades. Detailed discussions of state-of-the-art on 
the subject until 1986 may be found in the reviews by 
Sirignano [l-4], Faeth [5], Law (61 and Williams [7]. 
The classical droplet vaporization model is described 
in many textbooks on combustion (see, e.g. Kuo [8] 
and Williams [9]). This model is based on many over- 
simplified assumptions, such as a unit Lewis number 
in the gas phase near the droplet. To account for 
the effect of forced convection in the gas phase, the 
vaporization rate of the droplet in a stagnant environ- 
ment is simply multiplied by an empirical correction 
factor 0.5Nu0, where Nu, = Nu,(Re, Pr) is the Nusselt 
number for a solid non-vaporizing sphere. Variations 
in physical properties are neglected ; average prop- 
erties and unitary Lewis number are employed. The 
effect of the Stefan flow (blowing) on heat and mass 
transfer between the moving droplet and the gas flow 
is assumed to be the same as in the case of the stag- 
nant droplet. The droplet surface is postulated to 
be at the normal boiling temperature, and transient 
liquid heating is neglected. In reality, however, the 
Lewis number may vary considerably (in the range 
of l-4) during the vaporization period ; the Stefan 
flow effect may depend on the droplet Reynolds 

number; and the transient liquid heating appears to 
be a controlling factor of the droplet vaporization 
rate [l]. 

The importance of the process of transient liquid 
heating has been demonstrated in ref. [lo] for the case 
of a stagnant vaporizing droplet (Re = 0). In typical 
combustion situations, the duration of the transient 
droplet heating is comparable with the droplet vapor- 
ization time. Therefore, the adequate description of 
the heat transfer inside the droplet is the important 
part of the vaporization model. References [25, 261 
found that the liquid circulation inside the moving 
droplet may considerably change the time scale of the 
internal heating process. Several approximate models 
have been suggested in the literature to describe the 
different regimes of heat transfer inside the droplets. 
More detailed discussion of these models will be given 
in the next section. 

Recently, the comprehensive computational studies 
of the dynamics of a single vaporizing droplet inserted 
into a hot gas flow have been undertaken by several 
authors [I l-161. Renksizbulut and Yuen [l l] pre- 
sented the finite-difference analysis of flow and heat 
and mass transfer around the vaporizing heptane 
sphere including the effects of blowing and variable 
physical properties. However, the specific heat of fuel 
vapor and air were treated as equal and constant. 
Unfortunately, the latter assumption is invalid for 
the hydrocarbon fuels where, for example, the ratio 
CpF/Cair = 3 at T = 600°C. Patnaik et al. [12] and 
Dwyer and Sanders [13, 141 analyzed the dynamics 
of the evaporating droplet including the effects of 
transient convection, Stefan flow, internal circulation 
and liquid heating. The viscosity of the fuel vapor/ 
air mixture was variable and other thermophysical 
properties were calculated assuming the constant 
values of the Schmidt and Prandtl numbers : SC = 2, 

Pr = 0.7. Haywood and Renksizbulut [15, 161 prc- 
sented the finite-difference calculations of the life his- 
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NOMENCLATURE 

averaging parameter 
mass transfer number 
heat transfer number 
droplet drag coefficient 
friction drag coefficient 
fuel vapor specific heat 
vapor/air binary diffusion coefficient 
relative change of film thickness 
iteration number 
thermal conductivity 
Lewis number, k,/(p,DC,,) 
vaporization rate [g s- ‘1 
initial droplet mass [g] 
Nusselt number 
pressure 
Peclet number, Re Pr 
Prandtl number 
heat transferred into the droplet 
[cal s- ‘1 
radius [cm] 
initial droplet radius 
instantaneous droplet radius ; r: = r,/r, 
Reynolds number 
Schmidt number 
Sherwood number 
temperature [K] 
time 
droplet velocity 
maximum velocity on the droplet 
surface 
gas flow velocity 
radial and angular components of 
liquid velocity 

Wi molecular weight of ith component 
X distance travelled by the droplet 
X molar fraction 
Y mass fraction. 

Greek symbols 

% 
thermal diffusivity 
film thickness 

p dynamic viscosity 

$ 

density 
non-dimensional parameter defined by 
equation (22) 

x effective conductivity parameter. 

Subscripts 
air air 
f film 
F fuel vapor 

g gas 
L liquid 
M mass diffusion problem 

; 
surface 
thermal problem 

0” 
far from a droplet 
initial state (also without the Stefan 
flow). 

Superscripts and overscore 
- 

average (reference) value 
* modified value 

non-dimensional value. 

tory of an n-heptane droplet moving and evaporating 
in its own super-heating vapor. Both the effects of 
variable properties and internal circulation and heat- 
ing were taken into consideration. It is unclear, how- 
ever, if their results are applicable to the practical case 
of a non-vapor environment where the diffusion may 
be one of the controlling factors in the vaporization 
process. 

It should be noted that the studies [12-161 lead 
to some partially conflicting conclusions about the 
droplet drag coefficient, Cn. Dwyer and Sanders [13, 
141 found that Cn decreases significantly as the droplet 
vaporizes and the relative velocity between the droplet 
and gas decreases. In contrast, Haywood and Renk- 
sizbulut [15, 161 observed that the drag coefficient 
increases in the course of droplet motion and vapor- 
ization, and the ‘standard drag curve’, Cn = C,(Re), 
of a solid sphere may be used for a vaporizing droplet 
provided the thermophysical properties in the gas film 
are evaluated at some average temperature and the 

appropriate correction is made to account for the 
blowing effect. Note, however, all investigators are 
making calculations in different parameter regimes. 
The above discussion shows that additional efforts are 
required in order to obtain a better understanding of 
the droplet dynamics and the vaporization/com- 
bustion process. 

It is emphasized that the advanced numerical 
models cannot be directly adopted for the spray 
combustion calculations, primarily due to the great 
amount of computer time needed for a single droplet 
analysis. (However, the exact numerical solutions may 
be very useful for improvement of the approximate 
models currently used in spray combustion calcu- 
lations.) In the present study, we have formulated a 
new approximate droplet vaporization model which 
can be suitable for the spray combustion calculations. 
In spite of its simplified character, the new model 
accounts for many important physical effects men- 
tioned above. 
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THEORY 

Droplet dynamics 
For simplicity, we consider a case where the gas 

flow is one-dimensional and the initial droplet velocity 
is parallel to the gas flow direction. The droplet 
motion and radius reduction are governed by the fol- 
lowing equations : 

dX 
-_=u 
dt 

(1) 

dr, rh 

;il= 
-- 

4zp,r,Z * (3) 

The drag coefficient is usually expressed as a func- 
tion of the Reynolds number, Cn = C,(Re), where 
Re = 2p,l U, - Ulr&. Since the Reynolds number 
is interpreted as a ratio of inertia to viscous forces, 
the definition of Re uses the free-stream density, pm, 
and some average viscosity, cl,, of the air/vapor mix- 
ture in the boundary layer near the droplet surface. 
As experimentally shown by Yuen and Chen [17], the 
drag coefficient of evaporating droplets may be well 
approximated by the ‘standard drag curve’ provided 
the gas viscosity, K, is evaluated at some reference 
temperature and fuel concentration 

T= T,+A,(T,-T,); FF = Y,,+A,(Y,,-Yr,) 

(4) 

where A, is the averaging parameter. Yuen and Chen 
[17] recommended the value R, = l/3 (‘l/3 rule’). 
However, the experiments in ref. [17] were conducted 
at relatively low gas temperatures with the transfer 
number B = CJT, - T,)/L < 3. Additional research 
is required to determine properly the values of Cn for 
larger vaporization rates. 

In the present study we used the above recom- 
mendation [17’j along with the following correla- 
tion for the ‘standard drag curve’ [5] : 

(5) 

For dense spray regions, where the distance between 
droplets is comparable with the droplet’s diameter, 
the drag coefficient should also depend on the local 
droplet concentration in the gas flow. As new cor- 
relations including these effects become available, they 
can replace equation (5) in the present droplet vapor- 
ization model. Note that Haywood and Renksizbulut 
[ 15, 161 has recommended a mass transfer correction 
to equation (5). 

Gas-phase analysis 
The analysis of heat and mass transfer processes 

in the gas phase near the droplet surface allows the 
determination of the instantaneous vaporization rate, 

ti, and the amount of heat penetrating into the droplet 
interior, QL. In this study we use the gas-phase model 
which has been recently developed by the present 
authors (181. Below is a discussion of the general 
assumptions of the model and the final computational 
algorithm. 

We assume that the gas phase heat and mass trans- 
fer may be considered as quasi-steady, the pressure 
drop in the gas is negligible, and the thermophysical 
properties may be treated as a constant provided they 
are evaluated at some reference conditions (see equa- 
tion (4)). These assumptions supported, in particular, 
by the results of Hubbard et al’s [I91 study that 
analyzed the stagnant droplet (Re = 0) vaporization 
at P Q 10 atm including transients and variable prop- 
erties effects. They also recommended the use of the 
‘l/3 rule’ (A, = l/3) for the thermophysical properties 
averaging procedure. Note that as Reynolds number 
increases, the quasi-steady assumption becomes even 
more justified since the relaxation time for the trans- 
port processes in the gas boundary layer decreases as 
t nlax - r/AU, = r’/(v,Re), while the droplet vapor- 
ization time varies approximately as 1/Re0.5 at high 
Re. 

To take into account the effect of the convective 
transport caused by the droplet motion relative to the 
gas, we employ the so-called ‘film theory’ [20,21]. The 
film theory assumes that the resistance to heat or mass 
exchange between a surface and a gas flow may be 
modelled by introducing the concept of gas films of 
constant thicknesses : &, BM. Thus, for the non-vapor- 
izing spherical particle, the thicknesses of the thermal 
and diffusional films are calculated as 

(6) 

where Nu o = Nuo(Re, Pr) and She = Sho(Re, SC) are 
the Nusselt and Sherwood numbers, respectively. 
Expressions (6) are derived from the requirement that 
the rates of a purely molecular transport by thermal 
conduction or diffusion through the film must be 
equal to the actual intensity of the convective heat or 
mass transfer between the surface and the external 
flow. The classical tihn model uses the same ex- 
pressions (6) for an evaporating droplet. However, 
the presence of the Stefan flow will influence the values 
of dT and &, since a surface blowing results in the 
thickening of the laminar boundary layer [22]. To 
take into consideration this effect, we introduce the 
correction factors 

FT = &l&o ; EM = Wb.to (7) 

which represent the relative change of the film thick- 
nesses due to the Stefan flow. The expressions for FT 
and FM will be considered below. 

As in other approximate models, the film model 
assumes that the distribution of the temperature and 
fuel vapor concentrations along the droplet surface 
are uniform. This assumption may cause some under- 
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estimation of the droplet vaporization rate since the 
nonlinearity of the relationship between the local sur- 
face temperature and fuel vapor pressure (Clausius- 
Clapeyron equation) does not justify the usage of the 
same relation for the surface-averaged values. 

Finally, the extended film model yields the follow- 
ing expressions for the instantaneous droplet vapor- 
ization rate : 

riz = 27cQ,r, Sh* In (1 -f BM) (8) 

F 
riz = 271 B rs Ah* In (1 + BT) 

c,, 
(9) 

where &, 6,, and & are the average density, binary 
diffusion coefficient and thermal conductivity of the 
gas mixture in the film, respectively ; cppF is the average 
vapor specific heat in the film ; Sh* and Nu* are the 
non-dimensional parameters which are expressed as 

Sh* =2+(%,-2)/F, (10) 

NM* = 2+(Nu,--2)/F,. (11) 

The values B, and B, are called the Spalding mass 
and heat transfer numbers, and they are calculated as 

(12) 

(13) 

Here Yr is the fuel mass fraction, L( T,) the latent heat 
of vaporization at temperature T,; subscripts s and 
co refer to the conditions at the droplet surface and 
external gas flow, respectively. 

Equations (8) and (9) resemble very closely the 
corresponding expressions for the droplet vapor- 
ization rate predicted by the classical model. The only 
difference is that the values of Nun and ShO in the 
classical formulas are substituted by Nu* amd Sh*, 
respectively. Note also that Nu* --f Nu,, and Sh* --f 
S/r,, as FT -+ 1 and FM + 1. For these reasons, the 
parameters Nu* and Sh* may be termed as ‘modified’ 
Nusselt and Sherwood numbers. Note, however, that 
these parameters should not be confused with the 
actual Nusselt and Sherwood numbers which are 
defined as non-dimensional heat and mass transfer 

coefficients 

Sh= _?!__-. dY, 
i > (Y,,- Yr.,,) dr g 

(14) 

Thus, for example, the actual Sherwood number is 
expressed in the present model as 

ln(l+B,) 
Sh = A%* B- 

M 
(15) 

film thickness, we considered a model problem of the 
laminar boundary layer flow past a vaporizing wedge. 
The range of parameters was : 0 < (BT, B,) < 20 ; 
1 < (SC, Pr) < 3; 0 < /l < 271 (here b is the wedge 
angle). In the case of an isothermal surface and con- 
stant physical properties of the fluid, the problem has 

a self-similar solution and the correction factors Fh, 
and FT do not depend on the local Reynolds number. 
It was found that the values FM and F, are practically 
insensitive to the Schmidt and Prandtl numbers and 
the wedge angle variations, and can be approximated as 

FM = F(B,), FT = F(B,.) 

where F(B) is the universal function 

ilh) 

In(l+B) 
F(B)=(l+B)“’ ACRE (17) 

Note that F(B) increases from 1 to 1.285 as B grows 
from 0 to 8. In the interval 8 $ B < 20, the values of 
F(B) remain practically constant. 

We assume that equations (16) and (17) may also 
be used for the case of the evaporating droplet. At 

high Reynolds numbers, when Nu, >> 2, equations (8), 
(lo), and (17) predict that the vaporization rate varies 
as ti - B,(l + BT)- O.‘. The latter result is in quali- 
tative agreement with the experimental data of Renk- 

sizbulut and Yuen [23] for water, methanol and hep- 
tane droplets in the range of 25 < Re < 2000 and 
BT < 2.8. 

Consider now the practical step-by-step procedure 
of determination of the vaporization rate ti and the 
heat transferred into the droplet interior, QL Assume 
that we know the droplet surface temperature 7’s, vel- 
ocity U, and the conditions of the free-stream flow : 
U,, T,, Y,,,. The solution algorithm is given below. 

(1) Calculate the molar and mass fuel vapor frac- 
tions at the droplet surface 

X - P,,/P, Y,., = xrsW,.,‘~.qW,. F1 - (18) 

Here PFs is the fuel vapor saturated pressure which 
is evaluated using the appropriate experimental or 
theoretical correlations (Clasius-Clapeyron) 

P,., = P,?(T,). (19) 

(2) Calculate the average physical properties 

p, iZppF, cpp,&, & ii, Le = &./(&LX&, Pr, SC 

in the gas film using the reference conditions given by 
equation (4). 

(3) Calculate the Reynolds number, Re = 
2p,]U-U,(r,/pL8, and the Nusselt and Sherwood 
number for a non-vaporizing droplet. The well-known 
Frossling correlations may be used for Nu, and 

Sh, evaluations 

Nu, = 2+0.552Rc”’ Pr” ; 

Sh, = 2+0.552Re’:’ SC”‘. (20) 

To find the correction factors FM and FT for the Note that equations (20) overestimate the transfer 
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rate at low Reynolds numbers (Re < 10). Particularly, 
they predict the physically incorrect supersensitivity 
of the transfer rate to the small velocity fluctuations 
near Re = 0, since (aNuo/aRe),, o = co. As noted by 
Crocco [43], this fact may result in erroneous con- 
clusions during a combustion instability analysis. 

As an alternative to equations (20), the following 
correlations by Clift et al. [24] may be recommended : 

Nu, = If (1 + Re Pr) ‘13f(Re) 

Sh, = l+(l+ReS~)‘~~f(Re) (21) 

where f(Re) = 1 at Re < 1 and f(Re) = Re0.077 at 
Re < 400. Equations (21) approximate the numerical 
results by different authors in the range of 0.25 < (Pr, 
SC) < 100 with an error less than 3%. 

(4) Calculate the Spalding mass transfer number, 
&,, diffusional film correction factor, FM, modified 
Sherwood number, S/z*, and the mass vaporization 
rate, ti (equations (12), (17), (10) and (8)). 

(5) Calculate the correction factor for the thermal 
film thickness, FT = F(B,), using the value of the heat 
transfer number, B$“, from the previous iteration or 
previous time step (equation (17)). 

(6) Calculate the modified Nusselt number, Nu* 
(equation (1 l)), the parameter 

4=@)(g); (22) 

and the corrected value of the heat transfer number 

BT = (1+&)+-l. (23) 

Return to step (5) if I&- @dl < Q,, where cB is the 
desired accuracy of the B-number evaluation. 

(7) Calculate the heat penetrating into the liquid 
phase 

(24) 

Liquidphase analysis 
A knowledge of the instantaneous heat transferred 

into the liquid phase (equation (24)) allows us to 
predict the temperature inside the droplet as a func- 
tion of time. The transient droplet temperature is 
often calculated using the following simplified models 

V, 61: 

(a) the ‘rapid mixing limit’ or ‘infinite conductivity 
model’ which postulates that the temperature within 
the droplet is spatially uniform although time vary- 
ing ; 

(b) the ‘conduction limit’ model which assumes 
that the heat is transferred within the liquid solely by 
the thermal conduction and the surface temperature 
is uniform. 

These models are usually considered as two extremes 
bounding the possible range of real conditions. Ref- 
erences [25,26] demonstrated that heat transfer within 
moving droplets is of the pronounced convective type 

due to the intensive liquid circulation caused by the 
surface friction. The Reynolds and Peclet numbers for 
the droplet interior, which can be defined as 

ReL = u,dpL __ ; PeL = Re,_ PrL 
PL 

appear to be very large compared to unity. In equations 
(25), U, is the maximum velocity at the droplet surface 
(in the coordinate system related to the droplet), and 
subscript ‘L’ refers to the liquid phase. References 
[27-291 developed the ‘vortex model’ which assumes 
that the internal circulation in the droplet is rep- 
resented by the well-known Hill vortex and, due to 
the high liquid Peclet number, PeL, the isotherms 
inside the droplet coincide with the streamlines. 

Comparisons between different simplified models 
in spray calculations were made by Aggarwal et al. 
[30]. It was found that the instantaneous droplet 
radius as a function of time predicted by the vortex 
model falls between those given by the rapid mixing 
and conduction limit models. 

The instantaneous vaporization rate is extremely 
sensitive to the selection of the liquid heating model. 
To compare amongst different simplified models, we 
undertake first a more detailed analysis of the heat 
transfer inside the moving droplet. The general 
assumptions of the extended model are given below. 

(a) Temperature distribution along the droplet sur- 
face is uniform but time varying. 

(b) Instantaneous velocity field inside the moving 
evaporating droplet may be approximated by the Hill 
spherical vortex solution 

V, = lJ,(l-r2/r,2)cose (26) 

V, = U,(l-2rZ/r,2)sine (27) 

where V: and V;, are the radial and angular compo- 
nents of liquid velocity in the spherical coordinate 
system (r, 0). The maximum surface velocity varies as 
a function of time. 

The first assumption is made in order to be con- 
sistent with the one-dimensional gas-phase model 
which operates with the average surface temperature 
and cannot predict the local distribution of the surface 
temperature or heat flux. The second assumption is 
based on the numerical results of Rivkind and Ryskin 
[34], Oliver and Chung [35], and other authors (see, 
ref. [24]) who analyzed the flow structures inside and 
outside the droplet moving at terminal velocity in 
another viscous fluid. For a wide range of conditions 
(Reynolds numbers, ratios of fluid viscosities and den- 
sities), their internal streamline patterns were insen- 
sitive to the internal Reynolds number and resemble 
very closely the Hill vortex. We assume that the same 
Hill vortex solution, equations (26) and (27), is also 
applicable to the unsteady situation when the droplet 
vaporizes and its velocity relative to the gas varies 
with time. The characteristic time of stabilization of 
the velocity field inside the droplet, thvdr, depends on 
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the liquid Reynolds number. At ReL < 1 (viscous 
regime), this time may be estimated at thydr - ri/vL. 
At high liquid Reynolds number (Re, >> 1), the vor- 
ticity disturbance is transferred from the surface into 
the droplet depth by convection and thydr 5 r,lUs = 
r:/(v, Re,). Since the Prandtl number for liquid fuel 
is about 10, the value of thydi appears to be much 
shorter than the characteristic heating time : tthcrm - 
ri/tl,. Therefore, the use of velocity profiles (26) and 
(27) in the transient heating analysis is justified. 

To find the maximum liquid velocity at the surface, 
U,, we recall that the friction component of the droplet 
drag force is calculated as 

Ffr,, = 2nr: 
s 

“n (G)g sin2 0 dO (28) 

where (rr& is the shear stress on the droplet surface 
from the gas side [20]. Since the shear stresses are 
continuous through the interface between the gas and 
liquid 

(GJ, = (7,,lh_ (29) 

the value of zpo may be evaluated using the known 
velocity distributions, equations (26) and (27), on the 
liquid side. Finally, the maximum surface velocity is 
expressed as 

where Cp is the friction drag coefficient, and AU,~, = 
U, - U is the relative gas/droplet velocity. 

In general, CF is a function of the Reynolds number, 
fluid viscosity ratio pL/pLgr density ratio pJpg and the 
transfer number B. The data on the friction drag 
coefficient of a moving evaporating droplet are absent 
in the literature. For a solid non-vaporizing sphere, 
the available numerical data on CF [24] can be cor- 
related as 

C, = 12.69Re-“3 (10 < Re < 100). (31) 

Upon substitution into equation (30), the latter cor- 
relation produces a satisfactory prediction of the 
maximum surface velocity of a non-vaporizing drop- 
let at pLL/pp > 10. Thus, for example, at Re, = 100 
and viscosities ratios pL/pLp = 10 and 55, equations 
(30) and (31) yield: UJAU, = 0.184 and 0.0335, 
respectively. The numerical solutions by Rivkind and 
Ryskin [34] and LeClair et al. [36] give for the same 
conditions UJAU, = 0.2 and 0.036, respectively. 

For the case of an evaporating sphere, Renksizbulut 
and Yuen [ 111 found that the Stefan flow reduces the 
friction drag coefficient by a factor (I+ B). This results 
in the correlation 

12.69 
C, = T__ 

Re”‘(l+ BM) (32) 

which has been used as a first approximation in the 
present model. It should be noted, however, that the 
computational study [ 1 I] considered only small trans- 

fer numbers (B < 0.78). The analysis by Emmons [371 
for the boundary layer flow over the evaporating plate 
shows that the friction drag is reduced approximately 
by a factor (l+B)“.75 at B < 20. Obviously, ad- 
ditional efforts are required to determine C, for an 
evaporating droplet at high values of B. 

The transient heat transfer inside the circulating 
and evaporating droplet is governed by the following 
dimensionless energy equation : 

Here r: = r,/ro is the non-dimensional radius of the 
droplet ; u = r/r, is the non-dimensional radial coor- 
dinate ; V: = VJU, and 1’; = V,,/lJ, are the non- 
dimensional radial and tangential velocity com- 
ponents ; Z = (T- T,)/T,, is the non-dimensional 
temperature ; 7 = a,t/ri is the non-dimensional time ; 
fl = O.Sd(r:)‘/dr is the non-dimensional parameter 
proportional to the surface regression rate of the drop- 
let. The initial and boundary conditions are given 
below. 

(a) Uniform initial temperature 

T=o, z=o. (34) 

(b) Uniform temperature and given total heat flux 
at the surface 

yI = 1; FZ/c’O = 0 (35) 

sin OdH = Q,/(27cr,k,T,). (36) 

(c) Symmetry condition along the axis 

0 = 0, n, irZiii0 = 0. (37) 

It is easily seen that the extended model, equations 
(33)-(37), includes the previous simplified models as 
the limiting cases. For example, at Pe, -+ 0 the 
extended model reduces to the ‘conduction limit’ 
model. In the opposite limiting case of very high Pe,_, 
the convective transport inside the droplet is much 
stronger than thermal diffusion transfer, and hence 
the isotherms may be expected to coincide with the 
streamlines (‘vortex’ model). The third limiting case of 
k, -+ w represents the ‘intinite conductivity’ model. 

Recently, an alternative approach has been sug- 
gested [3 1, 321 in order to simplify the calculation 
procedure for internally circulating droplets. This 
approach is equivalent to the conduction limit model 
for the use of the ‘effective’ value of the thermal con- 
ductivity coefficient inside the droplet : keR = &_ 
(x > 1). Such an idea was first introduced by Kronig 
and Brink [33] who studied mass transfer inside the 
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3 I 

X 
2.72 (Kmn$ & Brink) 
____-_ 

2 

1 1 10 100 loo0 
Liquid Pcclet number, Pey 2U&c, 

FIG. 1. Effective thermal conductivity factor vs liquid Peelet 
number. Approximate results of equation (39). 

droplets for Hill’s type of internal circulation at high 
Peclet numbers. They found that in the asymptotic 
regime (r + co), the overall heat or mass transfer rate 
between the droplet interior and the surface is 2.72 
times higher than in the case of the solid sphere. This 
fact may be formally interpreted as an increasing of 
the sphere thermal conductivity by a factor x = 2.72. 
Such an approach can be called the ‘effective con- 
ductivity model’. 

Jin and Borman [32] approximated the results by 
Kronig and Brink to find the coefficient x as a function 
of time. Talley and Yao [31] found that using the 
constant factor x = 2.25 may well fit the vortex model 
results. Theoretically, the factor x should also depend 
on the liquid Peclet number, Pet,. 

In the present study, we considered the ‘effective 
conductivity model’ where the factor x = x(PeJ was 
found based on the numerical results by Johns and 
Beckmann [38] for mass transfer inside a circulating 
droplet at intermediate PeL. Johns and Beckmann 
calculated the asymptotic Nusselt number for the 
internal problem, A$, = Nui,(PeL). The value of NUi, 
varies between NUin(O) = 6.58 for a solid sphere and 
Nui,(co) = 17.9 for Pe, + 00. The factor x is cal- 
culated as 

x = Nui, (Pe)lNUi,(O) (38) 

and varies over the range of l-2.72. We found the 
following approximation which fits the Johns and 
Beckmann data within +_2% : 

x = 1.86+0.86tanh [2.245 log,, (Pe,/30)]. (39) 

This curve is shown in Fig. 1. 

Numerical method 
The ordinary differential equations (l)-(3) were 

solved by the implicit iterative method of second- 
order accuracy with respect to time [39]. The right- 
hand sides of equations (l)-(3) are calculated using 
the arithmetic mean values of variables r,, T,, U, X at 
time levels t and (t+ At), as for instance 

TS = O.S[T,(t)+T~(t+At)J. 

Here j is the iteration number. An initial estimation 

for T,(t+At) is taken to be equal to T,(t). The iter- 
ations are terminated when the following conditions 
are satisfied : 

ITi+ ’ - T;/I < 0.01 K 

](&‘+l-ti’)/ti’] < 0.01. 

The internal droplet temperature for the conduction 
limit or effective conductivity models was calculated 
using the Crank-Nicolson scheme. The number of 
grid intervals in the radial direction inside the droplet 
was usually 100, the time step was about 0.01 ms. In 
most cases, no more than three iterations were needed 
for the convergence. When the above global iteration 
process is employed, and the time step At is sufficiently 
small (say, of the order of lo-* ms), the internal 
iteration loop (steps 5 and 6) becomes unnecessary. 
Note that reasonable accuracy can be obtained with 
only 20 grid intervals inside the droplet. In such a 
case, the total CPU time required for a single droplet 
analysis is about 5 s on a VAX-780. 

The energy equation (33) for the extended model is 
solved by the fully implicit iterative finite difference 
method. The space derivatives are approximated by cen- 
tral differences and the finite-difference grid spacings 
(At], A0) are uniform. The difficulties associated with 
integral boundary condition (36) can be overcome 
by taking advantage of the linearity of the problem. 
Assume that the temperature distribution inside 
the droplet is known at some time level z : Z = Z,. 
Then, the temperature at the new time level (r+A.z) 
is represented as a linear combination of two functions 

Z = Z, (rt, 6,z) +Az*(?, e, 7) (40) 

where Z, and Z2 are the partial solutions of equation 
(33). Both functions Z, and Z2 satisfy the symmetry 
conditions (37). At time r, the values of functions Z, 
and Z2 are prescribed as 

Z, (rl, t&z) = Z(rl, 6, r) (41) 

Z2h 8, z> = 0. (42) 

The surface values of functions Zi and Z, at time 
(r + AZ) are given as 

z,(i,e,7+~7) = z,(i,e,7) (43) 

Z*(l, 8, t+A7) = 1. (4) 

It is easily seen that the solutions Z, (11, 6,7 + 117) and 
Z,(q, 0, 7+A7) at the new time level (r+ AZ) can 
be found independently of one another. Then, the 
constant A in equation (40) is determined using 
boundary condition (36). Note that A will vary with 
time. 

The number of mesh intervals within the droplet 
was 70 x 60 in the radial and angular directions, 
respectively. The time step was about IO-’ ms. The 
mesh independence of computations has been con- 
lirmed using the more dense mesh 100 x 70. The total 
CPU time for a typical run is S-6 h on a VAX-780. 
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RESULTS AND DISCUSSION 

The applicability of the simplified models should be 
checked by comparison with more advanced numeri- 
cal solutions. Unfortunately, such a verification is still 
possible only for the stagnant droplet case (Re = 0). 
We compared the simplified gas-phase model with the 
steady-state calculations by Kent [41] for n-heptane 
and the transient analysis by Hubbard et al. [19] 
for n-octane. In both of these studies, the spatial 
variation of gas properties has been taken into 
account. The detailed discussion of this comparison 
is presented in the previous publication [18]. The 
vaporization rate of a droplet is extremely sensitive 

to the method used for the evaluation of physical 
properties. A very good agreement with the exact 
variable properties calculations is achieved by apply- 
ing the ‘l/3 rule’ for averaging of the gas mixture 
properties. 

The following results refer to the standard cases of 
n-decane droplets of initial radius r,, = 50 pm and 
temperature T, = 300 K which are injected into an 
air stream at T, = 1500 K, P, = 10 atm. The physical 
properties used in the computations are given in the 
Appendix. In Figs. 2 and 3, the dynamic and vapor- 
ization history of the droplet is illustrated for the 
case when the droplet with the initial velocity U = 15 
m s-’ is inserted into a quiescent air environment. 
The initial Reynolds number for the gas phase is 105. 
The calculations were made using the extended liquid 
heating model with the internal circulation. In some 
figures, the comparison is made with the simplified 
models of liquid heating, and there curve 1 denotes 
the extended model while curves 2 and 3 refer to the 
‘infinite conductivity’ and ‘conduction limit’ models, 
respectively. Curve 4 represents the ‘effective con- 
ductivity’ model with the factor x calculated as a 
function of the liquid Peclet number using equation 
(39). Figures 2(a)-(c) show the temporary variation 
of the non-dimensional droplet radius, (r,/r,), surface 
temperature, T,. and the instantaneous vaporization 
rate, (ti/m,J, respectively. Here, m, is the initial drop- 
let mass. The results for the extended liquid heating 
model fall, in general, between those for the ‘infinite 
conductivity’ and ‘conduction limit’ model. Inter- 
estingly. the curves of the ‘effective diffusivity’ model 
almost coincide with those of the extended model. 

Figure 2(d) shows the history of the average Lewis 
number te = ~J(p.@,&?,J, and the parameter 4 (see 
equation (22)) in the gas film. Initially, when the drop- 
let surface is cold and the vapor concentration in the 
film is low, the Lewis number is very high because the 
diffusion coefficient of heavy hydrocarbon vapor in 
air is much lower than the thermal diffusivity of air. 
As fuel concentration in the gas film grows, the Lewis 
number decreases, remaining, however, larger than 1. 
The parameter 4 varies from 1.05 to 1.2 in the course 
of vaporization. However, even its small deviation 
from 1.0 (value assumed by the classical theory) 
results in the considerable difference between the 
values of B, and BT (Fig. 2(e)). 

TIME. ms 

FIG. 2(a). Non-dimensional droplet radius vs time : extended 
model (curve 1). infinite conductivity model (curve 2). con- 
duction limit model (curve 3), and effective conductivity 

model (curve 4). 

FIG. 2(b). Surface temperature (K) vs time : various models. 

TIME,ms 

FIG. 2(c). Vaporization rate vs time : various models. 

Figure 2(f) illustrates the time variations of the gas 
phase and liquid phase Reynolds numbers. Gas phase 
Reynolds number, Re, decreases monotonically as the 
droplet decelerates and its diameter diminishes. Dur- 
ing the first half of the droplet life, the Reynolds 
number for the liquid interior appears to be con- 
siderably higher than Re for the gas. This fact was 
first predicted in refs. [25,26] based on the scale analy- 



Droplet vaporization model for spray combustion calculations 1613 

TIME. ms 

FIG. 2(d). Lewis number vs time and parameter 4 vs time. FIG. 2(g). Liquid Peclet number vs time. 

1 z 3 4 5 6 7 8 

TIME. ms 

FIG. 2(e). Transfer numbers vs time. 

TIME. ms 

FIG. 2(f). Gas and liquid Reynolds numbers vs time. 

sis. The maximum on the curve Re, = Re,(t) at small 
times is related to the variation of the liquid dynamic 
viscosity (see equation (30)), which was evaluated at 
the surface temperature. 

The liquid Peclet number behavior is qualitatively 
similar to that of ReL (Fig. 2(g)). During the con- 
siderable part of the droplet vaporization period, the 
Peclet number inside the droplet remains very high 
(PeL >> 1) indicating that the heat transfer within the 
droplet should be of the convection-dominated type. 

Figure 3 illustrates the isotherms inside the droplet 

at different times. Here, gas flows toward the right 
relative to the droplet center. The isotherms are plot- 
ted for the temperature levels : Ti = T,,,,,+ (T,,,,, 
-T,&/lO where (i = 1,2,. . ., lo), and Tmi” and 
T max represent the minimum and maximum tem- 
perature inside the droplet at a given time. The 
values of Tmin and Tmax are also shown. 

At very short times t c 0.025 ms, the heat is trans- 
ferred from the surface primarily by thermal conduc- 
tion. At t = 0.05 ms, the convective effects become 
very important and cause the distortion of the spheri- 

0.025ms 

0.05m.s 

O.lms 

FIG. 3(a). Liquid isotherms: 0.025,0.05, and 0.1 s. 
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FIG. 3(b). Liquid isotherms: 1.2, and 3 ms. 

cal symmetry of the temperature field inside the drop- 
let. During the time interval r = 0.1-4.0, the isotherm 
patterns within the droplet are very similar to those 
of the streamlines. This fact provides the qualitative 
confirmation of the ‘vortex model’ at high PeL. How- 
ever, as liquid phase Peclet number, Pe,, decreases 
below 100 (t = 5 ms), the reverse transition from con- 
vection- to conduction-dominated heat transfer is 
observed. 

The mechanism of the internal heat transfer may 
change considerably in the course of the droplet vapor- 
ization. In the above example, during the first 30- 
40% of the droplet lifetime, when the liquid Peclet 
number exceeds N 100, the heat is transferred in 
accordance with the prediction of the ‘vortex model’. 
During the last third of the droplet life, when 
Pe, < 10, the heat transfer mechanism is more similar 
to that of the ‘conduction limit model’. A smooth 
transition between these two regimes occurs in the 
range 100 > Pe,_ 2 10. From the computational point 
of view, it may be suggested that the switch between 
the ‘vortex’ and ‘conduction limit’ models should be 
made at some ‘critical’ liquid Peclet number, say 
Pe, = 20. However, the more convenient approach 
seems to use the ‘effective conductivity model’ with 
the X-factor given by equation (39). 

It should be recognized that the ‘effective con- 
ductivity model’ does not detail the important physi- 

FIG. 3(c). Liquid isotherms: 4, 5. and 6 ms. 

cal features of the problem associated with the internal 
circulation. However, this model reflects properly the 
global effect of the internal liquid motion and mixing 
on heat transfer within droplets. The important 
advantage of the ‘effective conductivity model’ is that 
the same computational scheme may be applied for 
all droplet groups in the spray in the wide range of 
Reynolds and Peclet numbers. 

In order to test the ‘effective conductivity model’ 
in more complicated situations, we considered the 
thermal and vaporization history of a droplet in a 
fluctuating flow field. Such a problem is very relevant 
to the analysis of combustion instability in liquid- 
fueled ramjets or liquid propellant rockets where the 
pressure, velocity and gas flow temperature may oscil- 
late in the frequency range of 100-15000 Hz [42]. In 
the following example, we consider a simple case in 
which the gas flow velocity varies as a prescribed 
harmonic function of time 

U, = 0, + A, cos 2nft. 

This might occur at a pressure node of the oscillation, 
for example. We assume, however, that the pressure 
and temperature of the gas remain constant. The vel- 
ocity amplitude is set as A,, = 15 m s- ‘, the frequency 
is f = 500 Hz, and the initial droplet velocity is equal 
to the average gas velocity U0 = 0,. All other par- 



FIG. 3(d). Liquid isotherms : 7,8, and 9 ms. 

ameters are selected to be the same as in the previous 
example. 

The results of the calculations are shown in Figs. 
4(a)-(c). Figure 4(a) shows the gas flow and droplet 
velocities as functions of time. Figures 4(b) and (c) 
show the instantaneous droplet radius and vapor- 
ization rate, respectively. Curves 1 and 4 refer to the 
extended model of liquid heating and to the ‘effective 
conductivity model’, respectively, The vaporization 
rate is considerably affected by the gas velocity oscil- 
lations. The sharp minima in Fig. 4(c) correspond 
to times when the relative gas-to-droplet velocity 

TIME,ms 

FIG. 4(a). Gas and droplet velocities vs time. 

4 
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TIME. ma 

FIG. 4(b). Non-dimensional droplet radius vs time. 

TlME,mS 

FIG. 4(c). Vaporization rate vs time. 

become zero (interception points at Fig. 4(a)). Again, 
the simplified ‘effective conductivity model’ agrees 
very well with the extended model of internal liquid 
heating. Certain details in the behavior are, however, 
not captured by the effective diffusivity model. 

The above results indicate that the ‘effective con- 
ductivity’ approach may be recommended for use in 
the droplet vaporization model. The advantages of 
this new vaporization model are its simplicity, appli- 
cability to the wide range of parameters (Re, 3, etc.), 
and a low amount of computer time required per 
single droplet life calculation. The proposed model 
agrees very well with the existing exact numerical sol- 
utions at Re = 0, and reasonably predicts the droplet 
vaporization rate at high Reynolds numbers. The 
model uses the available state-of-the-art semi-empi~- 
cal correlations for the total droplet drag coefficient, 
C,,, friction drag coefficient, C,, Nusselt and Sher- 
wood numbers, Nu, and ShO, as well as the 
theoretically-predicted relationships for the relative 
changes of the film thickness, FT(BT) and FM(BM), and 
for the effective conducti~ty factor, x(Pe& Some of 
these correlations, however, have been established for 
the limited range of the working parameters (Re, BT, 
&) or for the different geometrical configurations 
(wedge, stagnation point, etc.). Therefore, the exten- 
sion and improvement of the above correlations RW 
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desirable. The further refinements of the present sim- 
plified model can be made by comparison with the 
advanced numerical models when they become avail- 
able. 

CONCLUSION 

A new approximate model of vaporization of a 
moving fuel droplet has been formulated. This model 
represents the extension of the classical droplet vapor- 
ization model and includes such important effects as 

variable physical properties and non-unitary Lewis 
number in the gas phase, influence of the Stefan flow 
(blowing) on heat and mass transfer, and the effect 
of the transient liquid heating inside the internally 
circulating droplet. The gas phase calculations are 
based on the one-dimensional ‘stagnant film theory’ 
which has been extended to incorporate the Stefan 
flow effect on the thicknesses of the thermal and diffu- 
sional films. The transient liquid heating inside the 
droplet is calculated using the spherically symmetric 
‘effective conductivity model’. The ‘effective’ thermal 
conductivity of the liquid fuel, keK, is introduced to 
account for the heat enhancement due to the internal 
liquid circulation. The factor x = keE/kl depends on 
the instantaneous Peclet number in the liquid phase. 
The relationship x = x(PeL) has been found from the 
Johns and Beckmann study [38] on mass transfer 
within circulating droplets. The results of calculations 
with the ‘effective conductivity model’ appear to be in 
a very good agreement with those predicted by the 

extended liquid heating model that includes the sol- 
ution of the two-dimensional equation of convective 
heat transfer within a circulating vaporizing droplet. 

The proposed model may be used in the wide range 

of droplet sizes and Reynolds numbers. It requires a 
relatively small amount of computational time per 
single droplet life history. Therefore, this model is 
suitable for the spray combustion calculations which 
simultaneously trace the life histories of many indi- 

vidual droplets. 
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saturated vapor pressure : 
PFI = exp[11.495-5141.36/Td [atm] 

latent heat of vaporization : 
L(T,) = 9.453(619.0- Ts)“.38 Fcalkg-‘1 

binary diffusion coefficient : 
D = 5.46x 10F6 (T/300)‘~583 P-’ [m* s-r] 

vapor thermal conductivity : 
kr = 2.9 x 10m6 (T/300)‘.’ &al m-’ s-’ K-‘1 

vapor dynamic viscosity : 
pF = [0.564+ 1.75 x 10-3(T-300)J x 10-51kgm-‘s-) 

vapor specific heat : 
C,,, = 0.02547+1.3771,-0.4T:+O.l13T: at T, c 0.8 

and 
C,, = 0.0982+1.304T,-0.593T~+0.101T~ at 

T, > 0.8. 

Here T, = T/l000 K and C, is expressed in kcal kg-’ K-‘. 
Liquid fuel properties (except viscosity) were assumed to 

be constant and evaluated at some average temperature 
fr = 0.5 (T,,+ T& where Tbi, is the boiling temperature at 
a given pressure. Thus, for example, at Tr = 400 K 

pt. = 6.42 x 10m4 kg mm3 ; 

C,, = 0.602 kcal kg-’ K- ’ ; 

kL = 2.52 x lo-’ kcal m-’ K-‘. 

The liquid dynamic viscosity which appears in equation (30) 
was calculated at the surface temperature using the following 
approximation : 

p = 9.0x lo-‘exp(T./300-1) kgm-‘s-l. 

MODELE DE VAPORISATION DE GOUTTELETTE POUR LES CALCULS DE LA 
COMBUSTION 

R&.um&Cnr reexamine le modtle classique de la vaporisation de gouttelettes pour developper l’algorithme 
de calcul simple mais suffisamment pr&is qui peut &re UtilisC dans les calculs de combustion de liquide 
pulverise. Le nouveau modele inclut les effets des proprietes thermophysiques variables, dun nombre de 
Lewis different de l’unitb dans le tilm gazeux, de l’effet de l%coulement de Stefan sur le transfert de chaleur 
et de masse entre la gouttelette et le gas et celm de la circulation inteme et du chauffage variable du liquide. 
Pour &valuer les modeles simplifes concurrents du chauffage de la goutte, on considere le transfert de 
chaleur darts une goutte avec circulation; une “conductivite effective” monodimensionnclle est alors 
formulCe. Pour illustration, on analyse l’histoire dynamique de la vaporisation des gouttelettes inject& 

dans des courants d’air au repos ou fluctuants. 
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EIN TROPFENVERDAMPFUNGSMODELL FtiR DIE BERECHNUNG DER 
VERBRENNUNG VON BRENNSTOFFNEBEL 

Zusammenfassung-Das klassische Tropfenverdampfungsmodell wird angepaBt, urn einen einfachen, aber 
hinreichend genauen Algorithmus fur die Berechnung der Verbrennung von Brennstoffnebel zu entwickeln. 
Das neue Model1 berticksichtigt folgende Effekte : die Auswirkungen veriinderlicher thermophysikalischer 
Stoffeigenschaften, die Abweichung der Lewis-Zahl fiir den Gasfilm vom Wert “eins”, die Auswirkung des 
Stefan-Stroms auf den Wiirme- und Stoffiibergang zwischen Tropfen und Gas, die Einfltisse einer internen 
Zirkulationsstriimung und einer Aufheizung der Fltissigkeit. Urn die in Konkurrenz befindlichen 
vereinfachten Modelle fiir die Tropfenaufheizung einschatzen zu kiinnen, wurde ein verbessertes und 
erweitertes Model1 der Warmeiibertragung in einem sich bewegenden und zirkulierenden Tropfen 
betrachtet. Ein vereinfachtes eindimensionales Model1 fur die “effektive Leitfihigkeit” wird fur den Fall 
der instationlren Aufheizung der Fltissigkeit mit intemer Zirkulationsstromung formuliert. Zur Illustration 
werden die Bewegungs- und Verdampfungsverlaufe von Tropfen analysiert, die in einen stetigen und 

fluktuierenden HeiBluftstrom eingespritzt werden. 

HCTIOJIb3OBAHME MOAEJIH KAI-IEnbHOI’O HCI-IAPEHHR J(JI5I ‘PACYETA I-OPEHHR 
PACI-IbIJIA 

~IIepecMorpe?ra LJIBccBsec~aa MOLlenb Ircnaperitia xI1IIeJIb .&na paapa6ornrr qoc~oro, HO 
AOCT~TO'iIiOTOPAOrOpacPeraOrO ~OpHTMa,KOTOp~MOrteTE~Onb30Ba7bcnAnapacneTa IIpOWCCa 

rope= P acnbma. HOBUI MOA~JI~ ysrrareae~ pa3JInwie TeMo@i3wrrrrrx c~oik~~,oTn~~~e wicna 

nblOEGi OTeAEEIilW B ra30eoii Meme, B.nwnie noToxa ch+wa Ha Tenno-whwconepeiw Mewq 

rannci H ra30M H wfnxue wyqemiefi rprpryv B riecramrorraprroro iiarpena xswsoc~si. J&ui 

oqeara aAILJIorwmx+xx yqxxuewxbrx hioneneil Ilarpcea ranenb paccMoTpeHa 6onee coBepmerrrian 
MOA~J% remroneperroca eriyrpn ~~~rrxyrrae&x r(Hpnywpyxoxueeff ~anmi. C4$oprqvmponatia ynpoutermaa 

OnaoMeplias MoAelIb "31$+~~a~H0ti ~~B~LIHMo~T~~)', 0lmcbmaIOlLwl HecTiurEoHapl&l nporreec 
narpena xrurrcoc~~ c sqrpernreti saprynnrme2. B 18xxx~e v rrpoair~npo~ LpMa- 


